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Abstract

Careful control of water levels in the crushed cane in a sugar diffuser is required
for the efficient extraction of sucrose from the cane. The levels are monitored by
observing the water surface through windows inserted in the sides of the diffuser. It
is not clear,however, if these observations close to the wall reflect levels within the
body of the diffuser basically because there will be a gap between the crushed cane
and the wall which will effect the water flow. This is a seepage face problem which
is difficult however the simple models developed here suggest that observations will
be reliable.

1 Introduction

Diffusers remove sucrose from crushed and shredded cane by spraying water onto the
cane and collecting the sucrose in the water mixture that drains through the cane, see
Figure 1. This mixture is then processed to produce crystalline sugar. A long conveyor
carries the fibre through the diffuser and a counter-current washing action is used to
ensure that concentration differences between the cane and the percolating water remain
relatively large. Since any sprayed water needs to be eventually removed it is important
to use as little water as possible whilst still ensuring good sucrose extraction; these are
conflicting objectives. In order to efficiently remove sugar from the crushed and shredded
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32 Sugar Holdup in a Diffuser

Figure 1: The Diffuser: Cane is carried into the diffuser on a belt (left hand end in the
figure) and sprayed with water; a counter-current washing action is used. The water
percolates through the cane and is collected in trays under the diffuser.

cane in the diffuser it is necessary to maintain water levels at the top of the cane pile
in the diffuser. If this level is exceeded then flooding occurs, so that water streams
from different sprays will mix and the reverse flow diffuser’s purpose is defeated. If, on
the other hand, water levels are lower than the top of the pile then sugar will not be
efficiently removed from shredded cane close to the pile’s top. Maintaining the water
level at the top of the cane pile is however not an easy task because the permeability of
the cane varies significantly depending on many factors (cane type, water content, fibre
length and composition, density, etc.), and so varies with the feed into the diffuser. Also
if flooding occurs then it occurs rapidly; decisions concerning spray volume rates need to
be made online and quickly.

To facilitate the process viewing windows are inserted in the tanks so that, based on
observations of the water surface as seen in these windows, operators can adjust the flow
rates from the sprays. There is a gap between the shredded cane within the diffuser and
the walls of the diffuser including the window, so it is not clear if water levels as seen in
the windows match those within the body of the tank, and if not what corrections are
needed to take into account the difference. Additionally the presence of local permeability
fluctuations can result is an incorrect assessment of the water level in the body of the
tank. Understanding these issues was the problem the Sugar Milling Research Institute
asked the MISGSA to address.

Initially a hydrological model with gravitational flow into the air gap between the
shredded cane and the window was investigated, however the results conflicted with ob-
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servations. The problem appeared to be that the diffusive resistance to water movement
through the shredded cane and into the gap was much greater than one might expect, so
that a more detailed seepage face flow model was indicated, see Section 2. The resultant
problem is however difficult and more detailed and complicated than needed for this work,
so simpler models were investigated, see Section 3. It is hoped that these compromise
models provide some insight concerning these issues.

2 A seepage face analysis

It has been observed in the laboratory that water does not quickly drain out of a fully
exposed face of crushed cane even if the cane is saturated with water. Evidently the
resistance to flow through the cane is relatively large, so that it will take some time for
the water to reach the exposed face before streaming out. This may mean that there will
be significant differences in water levels within the diffuser and the observation window
at the side of the diffuser; we examine this situation.

The water flow rate from the sprinklers is designed to be such that there is almost
a balance between sprinkler inflow and water drainage outflow, and in fact on average
these flows must balance. The average drainage velocity through the cane is given by
its average permeability k. If this supply rate is exceeded locally then there will be an
accumulation of fluid within the pile and thus an increase in fluid height. Of course any
volume element of cane will be periodically over-flushed and under-flushed as it passes
under each sprinkler in turn, so that the through flow for the patch at any time will be
either too much or too small especially for volume elements close to the top of the diffuser
and this will lead to variations in the fluid height especially near to the diffuser walls.

We are dealing here with what is technically know as “seepage face flow”, which has
been much studied in a groundwater flow context, see Harr [2]. When the flow through an
aquifer reaches an exposed face the water streams down the surface. The presence of this
exposed face not only has local consequences but effects the flow throughout the aquefer.
In the groundwater flow case the flow is quasi-steady whereas in the present case the
flow is periodic so that transients play an important role. Such problems are notoriously
difficult to solve because the location of the water surface, and in particular the location
of the exit point for flow, needs to determined as part of the solution process. It is also
questionable if unsaturated flow considerations need to be taken into account (especially
in periodic flow situations), in which case the full non-linear unsaturated flow Richardson
model would be required, see [1]. However it is generally assumed that such effects are
small, in which case hodograph methods can be used to extract results [4]. Even so this
requires sophisticated numerics and remains a daunting task that could not be addressed
at the MISG. Simpler models were indicated and now will be described.
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3 Simple free surface model calculations

The vertical draining flow in the diffuser is modelled in detail in the paper by Hocking
and Mitchell [5] and in earlier study group reports [6]. In these papers simulations are
presented for the water height within the crushed cane as observed from a fixed location
outside the diffuser as the conveyor belt moves forwards with the feed. At any location
along the diffuser a steady state is predicted with the depth of water in the pulp remaining
fixed, even though the fluid is draining through it. Under such circumstances, after
adjusting for longitudinal depth variations due to sprinkler spacing, observations through
the windows would be reliable. However these simulations assumed no variations in flow
across the diffuser.

As indicated earlier however it would seem very likely that there would be a small
air gap between the pulp and the side of the diffuser and the observation window and,
because the flow in this gap is unrestricted by the presence of cane, this could significantly
effect the depth of flow at the observation window.

We consider the effect of cross diffuser permeability variations on the flow through
the pile, see Figure 2. The initial height of the water column is prescribed (at H) and
subsequently the water drains out. We define a Cartesian coordinate system with the
origin at the base of the side wall: x measures distance across the diffuser of width 2L, y
is the vertical coordinate, and z is aligned along the length of the diffuser. Assuming a
porous medium flow model, the appropriate variable is the piezometric head, φ(x, y, z, t),
defined as

φ =
p

ρg
+ y (1)

where p is the pressure, g is gravity, ρ is the density of the fluid and y is the elevation. A
Darcy’s Law model is assumed with the flow given by

q = −κ∇φ. (2)

where κ is the permeability. Combining Darcy’s Law with the continuity condition (∇·q =
0), and assuming the porous region is homogeneous and isotropic gives Laplace’s equation
for φ. Since the fluid movement at any point moving along is vertical we ignore the
variation in the z direction.

The pressure on the exposed boundaries of the region must be atmospheric, while
assuming symmetry around the centre-line of the diffuser gives the no-flow condition
φx = 0 at x = L. Thus the full problem, with boundary conditions is given by:

∇2φ = 0, 0 < x < L, 0 < y < η(x, t), t ≥ 0, (3)

φ = y on x = 0, 0 < y < η(0, t), (4)

φx = 0 on x = L, 0 < y < η(L, t), (5)

φ = 0 on 0 < x < L, y = 0, (6)

φ = η on 0 < x < L, y = η(x, t), (7)

ηt + κφxηx + κφy = 0 on y = η(x, t), (8)
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Figure 2: Sketch of the diffuser bed of width 2L. The conveyor is moving toward the
reader. At an instant frozen in time the level of water in the bed is constant at this
location. Dη

Dt
= 0 represents equation (8).

where y = η(x, t) is the equation of the surface of the liquid with initial height η(x, 0) = H
prescribed. The final two conditions (7, 8) are applied on the free surface of the liquid
in the bed. The first ensures continuity of pressure while the second states that fluid
particles move with the surface.

As pointed out earlier this system is complicated, requiring as it does a determination
of the variable location of the surface including the exit point from the pile. However
there is a simple exact solution given by

φ(x, y) = y, with η(x, t) = H − κt, (9)

where H is the height of the water surface associated with the a fixed influx into and
through the bed. This flow corresponds to “natural” steady drainage of speed κ through
the pile. For this ideal solution there is no flow through the seepage face; in essence the
air gap is not there. In such circumstances the fluid height will be uniform across the
diffuser and so the level shown in the side windows will accurately reflect the level inside
the diffuser.

3.1 Permeability variations

Under normal operating conditions, however, there will be higher and lower permeability
regions in the bed of the diffuser. Such variations are probably not predictable so that the
associated differential height rise is not predictable. However the effect of such variations
would be to cause an excess or deficit of flow through the system and, because the steady
drainage flow is natural for the system, one might expect this would result in the excess
fluid spilling out through the seepage face, and any deficit would result in an increased
gap size as continuity would dictate.

Based on these ideas we consider the effect of modifying the surface flux conditions (7,
8). We replace these conditions by an imposed flux condition at H. Explicitly we assume
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Figure 3: Liquid surface shape and velocity through the seepage face and through the
bottom of the diffuser bed for κ = 1, L/H = 3. Note the seepage face velocity is offset
by one unit to simplify the axis scale.

the flux is given by
φy(x,H) = 1 + ε. (10)

where ε represents a modification to the “ideal” flow condition; φy = 1 is the influx
associated with the ideal exact solution. Thus if ε is positive, then there is a slight excess
of inflow, while if ε is negative, there is a deficit.

This modified problem can be solved using Fourier series after first extracting the ideal
solution and is given by

φ(x, y) = y/H +
2εH

L

∞∑
k=0

sinh(λky/H)

λ2k cosh(λk)
sin(λkx/H), (11)

where

λk =
(2k + 1)π

2L
, k = 0, 1, 2, . . . (12)

are the appropriate eigenvalues. An approximation for the phreatic surface about y = H
is given by lines of constant head, and that nearest to y = H is

η(x) ≈ φ(x,H) = 1 +
2εH

L̄

∞∑
k=0

tanhλk sin(λkx/H)

λ2k
(13)

Figure 3 shows the resulting (approximate) shape of the free surface for a case of
ε = 0.1. It also shows that the flux through the base is slightly increased, but is lower
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near the seepage face. The velocity through the seepage face is zero near the base, and
there is a singularity at the point where the surface meets the seepage face. Overall the
total volume flowing out through the seepage face is quite small. The surface dips down at
the outer edge as there is some flow out through the seepage face. This is perhaps counter-
intuitive as more liquid is being forced in from the top, but this is being compensated
for by the flow out through the seepage face. There is also a slight increase in flow out
through the base.

This might model a case where there is a high permeability region in the bed, so
that rather than water being forced in from above, there are less pathways to remove the
existing liquid, leaving an excess. In the opposite case, where ε < 0 there is slight rise in
the surface. This is problematic because mathematically this is due to a slight “suction”
on the vertical face. This would result in a drying of this face and hence would act as a
barrier to down-flow, causing a slight build up at the top of the bed.

The implication is that if there is some hold up in the flow, then the level in the viewing
window would rise, while if the flow is going faster, due perhaps to a higher permeability
region, then it would drop. It is important to note that these conclusions are based
on a very small perturbation to the exact natural drainage solution, but typically such
approximations are quite good. These conclusions are based on the assumption that the
water level in the window is a reflection of the actual water level in the diffuser bed, rather
than the water level in the gap between the moving bed and the side walls. From these
results a 5% disruption in the downflow would result in a roughly similar movement up
or down at the window level, depending on the width of the bed. However, the disruption
occurs near the edge and so the flow in the middle may actually not be affected much at
all.

3.2 Wall flow effects

Given the flow is strongly vertical in the ideal situation, we can modify the equations to
take into account the fact that the permeability may be greater in a small region near to
the diffuser wall (at x = 0) due to the movement along the channel. Explicitly we model
this variation as

κ(x) = κ0 + εg(x) , (14)

where ε is a small parameter. Under these circumstances the equation of flow becomes

∂

∂x

(
κ(x)

∂φ

∂x

)
+ κ(x)

∂2φ

∂y2
= 0 (15)

and the same boundary conditions as before apply.

We seek a solution of the form

φ(x, y, t) = φ0 + εφ1 + . . . ., with η(x, t) = η0 + εη1 + . . . , (16)
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Figure 4: Liquid surface shape and velocity through the seepage face and through the
bottom of the diffuser bed for κ0 = 1, ε = 0.2, α = 2, L = 3. The blue line indicates the
leading order draining solution and the black includes the O(ε) term. The dashed line
indicates pure draining with no edge effects.

and substituting into (15) leads to the following problems;

O(1) : ∇2φ0 = 0 (17)

η0t − κ0φ0xη0x + κ0φ0y = 0, on y = η0(x, t) (18)

φ0 = η0, on y = η0(x, t) (19)

φ0 = y on x = 0, (20)

φ0x = 0 on x = L, (21)

φ = 0 on y = 0, (22)

for which the solution is (9), with φ0 = y, where H is the initial level.

At the next level,

O(ε) : g(x)∇2φ0 + κ0∇2φ1 + g(x)φ1x = 0 (23)

η1t − κ0φ0xη1x − κ0φ1xη0x − g(x)φ0xη0x (24)

+ κ0φ1y + g(x)φ0y = 0, on y = η0(x, t) (25)

φ1 = η1, on y = η0(x, t) (26)

φ1 = 0 on x = 0, (27)

φ1x = 0 on x = L, (28)

φ1 = 0 on y = 0. (29)
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However, many of these terms are zero, so that the problem becomes

O(ε) : ∇2φ1 = 0 (30)

η1t + κ0φ1y + g(x) = 0, on y = H − κ0t (31)

φ1 = η1, on y = H − κ0t (32)

φ1 = 0 on x = 0, (33)

φ1x = 0 on x = L, (34)

φ1 = 0 on y = 0. (35)

This can be solved as a time dependent Fourier series problem by letting

φ1(x, y, t) =
∞∑
k=0

ak(t) sinhλky sinλkx, (36)

η1(x, t) =
∞∑
k=0

bk(t) sinλkx, (37)

where

λk =
(2k + 1)π

2L
, k = 0, 1, 2, . . . (38)

ensures conditions are satisfied on x = 0, L and y = 0.
Now, on y = H − κ0t, φ1 = η1, so

bk(t) = ak(t) sinhλk(H − κ0t), (39)

and substituting into the final surface condition,

∞∑
k=0

(b′k(t) + κ0ak(t) coshλk(H − κ0t)) sinλkx = −g(x) (40)

and so we can write

b′k(t) + κ0λk cothλk(H − κ0t)bk(t) = −dk, k = 0, 1, 2, . . . (41)

where
∞∑
k=0

dk sinλkx = −g(x), (42)

so that

dk = − 2

L

∫ L

0

g(x) sinλkx dx, (43)

providing a set of differential equations for bk(t), k = 0, 1, 2, . . . . An initally flat liquid
surface gives bk(0) = ak(0) = 0, k = 0, 1, 2, . . . While in general this system cannot be
solved exactly, it can be solved very easily using a simple numerical scheme.
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The instantaneous flux through the seepage face can be obtained from

QS(t) = κ0

∫ H−κ0t

0

φ1x(0, y, t)dy = κ0

∞∑
k=0

ak(t)λk

∫ H−κ0t

0

sinhλky dy

= κ0

∞∑
k=0

ak(t) [coshλk(H − κ0t)− 1] . (44)

Consider a simple example in which g(x) = e−αx, then equation (43) becomes

dk =
2(λk − αe−αx sin(λkL))

L(α2 + λ2k)
=

2(λk − (−1)kαe−αx)

L(α2 + λ2k)
(45)

A series of surface solutions at different times for g(x) = exp(−αx) is shown in Figure 4,
for ε = 0.2, L = 3 and α = 2. Different times can also be thought of as different distance
down the diffuser from the inlet sprays, as shown in [5]. The dashed line indicates the
“pure draining” solution that would occur if the edge effects were not included. The rise
at the edge in the solution is an effect of the atmospheric pressure acting on the side of
the diffuser bed. This is slightly surprising and raises the surface level back up to close to
where it would be for isotropic flow. Furthermore, calculations indicate that the pressure
gradient at the edge of the bed would be such that there would be almost no flow out
through the seepage face. However, if there was a region of decreased permeability in this
system, a small flow out through the seepage face would result as the liquid surface would
slope slightly downward at the outer edge.

3.3 Comments

The calculations in this section suggest that the level of water in the glass should gener-
ally remain quite stable, and this should certainly be so in “ideal”, equilibrium operating
conditions. However, small increases or decreases in the permeability can lead not only
to small up or down variations (depending on whether it is a decrease or increase in per-
meability) but to flow through the seepage face which might lead to sudden fluctuations,
or in the case of a higher internal permeability a drying of the bagasse at the edge of
the diffuser. Importantly it seems that due to conservation of mass the changes in level
due to these different disruptions are manifested near the edge of the diffuser, where the
viewing windows occur, so that variations in the level there may not be a reflection of
changes across the whole diffuser.

The change in level seen appears to be of the order of the disruption from the equi-
librium flow situation, although if there is flow out through the seepage face one might
expect a flooding of the window, but this may not be indicative of flooding of the diffuser,
as a sudden decrease in permeability near to the edge may result in a flow through the
seepage face.
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